Change Scales

Tidycomm provides four functions to easily transform continuous scales and to standardize them:

These functions provide convenience wrappers that make it easy to read and spell out how you transformed your scales.

library(tidycomm)

The easiest one is to reverse your scale. You can just specify the scale and define the scale’s lower and upper end. Take autonomy_emphasis as an example that originally ranges from 1 to 5. We will reverse it to range from 5 to 1.

The function adds a new column named autonomy_emphasis_rev:

WoJ %>% 
  reverse_scale(autonomy_emphasis,
                lower_end = 1,
                upper_end = 5) %>% 
  dplyr::select(autonomy_emphasis,
                autonomy_emphasis_rev)
#> # A tibble: 1,200 × 2
#>    autonomy_emphasis autonomy_emphasis_rev
#>                <dbl>                 <dbl>
#>  1                 4                     2
#>  2                 4                     2
#>  3                 4                     2
#>  4                 5                     1
#>  5                 4                     2
#>  6                 4                     2
#>  7                 4                     2
#>  8                 3                     3
#>  9                 5                     1
#> 10                 4                     2
#> # ℹ 1,190 more rows

Alternatively, you can also specify the new column name manually:

WoJ %>% 
  reverse_scale(autonomy_emphasis,
                name = "new_emphasis",
                lower_end = 1,
                upper_end = 5) %>% 
  dplyr::select(autonomy_emphasis,
                new_emphasis)
#> # A tibble: 1,200 × 2
#>    autonomy_emphasis new_emphasis
#>                <dbl>        <dbl>
#>  1                 4            2
#>  2                 4            2
#>  3                 4            2
#>  4                 5            1
#>  5                 4            2
#>  6                 4            2
#>  7                 4            2
#>  8                 3            3
#>  9                 5            1
#> 10                 4            2
#> # ℹ 1,190 more rows

minmax_scale() just takes your continuous scale to a new range. For example, convert the 1-5 scale of autonomy_emphasis to a 1-10 scale while keeping the distances:

WoJ %>% 
  minmax_scale(autonomy_emphasis,
               change_to_min = 1,
               change_to_max = 10) %>% 
  dplyr::select(autonomy_emphasis,
                autonomy_emphasis_1to10)
#> # A tibble: 1,200 × 2
#>    autonomy_emphasis autonomy_emphasis_1to10
#>                <dbl>                   <dbl>
#>  1                 4                    7.75
#>  2                 4                    7.75
#>  3                 4                    7.75
#>  4                 5                   10   
#>  5                 4                    7.75
#>  6                 4                    7.75
#>  7                 4                    7.75
#>  8                 3                    5.5 
#>  9                 5                   10   
#> 10                 4                    7.75
#> # ℹ 1,190 more rows

center_scale() moves your continuous scale around a mean of 0:

WoJ %>% 
  center_scale(autonomy_selection) %>% 
  dplyr::select(autonomy_selection,
                autonomy_selection_centered)
#> # A tibble: 1,200 × 2
#>    autonomy_selection autonomy_selection_centered
#>                 <dbl>                       <dbl>
#>  1                  5                       1.12 
#>  2                  3                      -0.876
#>  3                  4                       0.124
#>  4                  4                       0.124
#>  5                  4                       0.124
#>  6                  4                       0.124
#>  7                  4                       0.124
#>  8                  3                      -0.876
#>  9                  5                       1.12 
#> 10                  2                      -1.88 
#> # ℹ 1,190 more rows

Finally, z_scale() does more or less the same but standardizes the outcome. To visualize this, we look at it with a visualized tab_frequencies():

WoJ %>% 
  z_scale(autonomy_selection) %>% 
  tab_frequencies(autonomy_selection,
                  autonomy_selection_z) %>% 
  visualize()

To set a specific value to NA:

WoJ %>% 
  setna_scale(autonomy_emphasis, value = 5) %>% 
  dplyr::select(autonomy_emphasis, autonomy_emphasis_na)
#> # A tibble: 1,200 × 2
#>    autonomy_emphasis autonomy_emphasis_na
#>                <dbl>                <dbl>
#>  1                 4                    4
#>  2                 4                    4
#>  3                 4                    4
#>  4                 5                   NA
#>  5                 4                    4
#>  6                 4                    4
#>  7                 4                    4
#>  8                 3                    3
#>  9                 5                   NA
#> 10                 4                    4
#> # ℹ 1,190 more rows

For recoding categorical scales:

WoJ %>% 
  dplyr::select(country) %>%
  recode_cat_scale(country, assign = c("Germany" = "german", "Switzerland" = "swiss"), other = "other")
#> The following unassigned values were found in country : Austria, Denmark, UK . They were recoded to the 'other' value ( other ).
#> # A tibble: 1,200 × 2
#>    country     country_rec
#>  * <fct>       <fct>      
#>  1 Germany     german     
#>  2 Germany     german     
#>  3 Switzerland swiss      
#>  4 Switzerland swiss      
#>  5 Austria     other      
#>  6 Switzerland swiss      
#>  7 Germany     german     
#>  8 Denmark     other      
#>  9 Switzerland swiss      
#> 10 Denmark     other      
#> # ℹ 1,190 more rows

To recode numeric scales into categories:

WoJ %>%
  dplyr::select(autonomy_emphasis) %>%
  categorize_scale(autonomy_emphasis, 
               lower_end =1, upper_end =5,
               breaks = c(2, 3),
               labels = c("Low", "Medium", "High"))
#> # A tibble: 1,200 × 2
#>    autonomy_emphasis autonomy_emphasis_cat
#>  *             <dbl> <fct>                
#>  1                 4 High                 
#>  2                 4 High                 
#>  3                 4 High                 
#>  4                 5 High                 
#>  5                 4 High                 
#>  6                 4 High                 
#>  7                 4 High                 
#>  8                 3 Medium               
#>  9                 5 High                 
#> 10                 4 High                 
#> # ℹ 1,190 more rows

And to create dummy variables:

WoJ %>% 
  dplyr::select(temp_contract) %>%
  dummify_scale(temp_contract)
#> # A tibble: 1,200 × 3
#>    temp_contract temp_contract_permanent temp_contract_temporary
#>  * <fct>                           <int>                   <int>
#>  1 Permanent                           1                       0
#>  2 Permanent                           1                       0
#>  3 Permanent                           1                       0
#>  4 Permanent                           1                       0
#>  5 Permanent                           1                       0
#>  6 <NA>                               NA                      NA
#>  7 Permanent                           1                       0
#>  8 Permanent                           1                       0
#>  9 Permanent                           1                       0
#> 10 Permanent                           1                       0
#> # ℹ 1,190 more rows